TOP PYSPARK INTERVIEW QUESTION 2023

What is Apache Spark and how does it differ from Hadoop? What are the benefits of using Spark over MapReduce? What is a Spark RDD and what operations can be performed on it? How does Spark handle fault-tolerance and data consistency? Explain the difference between Spark transformations and actions. What is a Spark DataFrame and how is it different from an RDD? What is Spark SQL and how does it work? How can you optimize a Spark job to improve its performance? How does Spark handle memory management and garbage collection? Explain the role of Spark Driver and Executors. What is PySpark and how does it differ from Apache Spark? How do you create a SparkContext in PySpark? What is the purpose of SparkContext? What is RDD (Resilient Distributed Dataset)? How is it different from DataFrame and Dataset? What are the different ways to create RDD in PySpark? What is the use of persist() method in PySpark? How does it differ from cache() method? What is the use of broadcast variables in PySpark...

SPARK : Ways to Rename column on Spark DataFrame

We often need to rename one or multiple columns on Spark DataFrame, Especially when a column is nested it becomes complicated. Let’s discuss all possible ways to rename column with Scala examples.
Though we have covered most of the examples in Scala here, the same concept can be used in PySpark to rename a DataFrame column (Python Spark).
  1. Using withColumnRenamed – To rename Spark DataFrame column name
  2. Using withColumnRenamed – To rename multiple columns
  3. Using StructType – To rename nested column on Spark DataFrame
  4. Using Select – To rename nested columns
  5. Using withColumn – To rename nested columns
  6. Using col() function – To Dynamically rename all or multiple columns
  7. Using toDF() – To rename all or multiple columns
First, let’s create our data for our examples, we are using Row class as we convert this data to Spark DataFrame.

val data = Seq(Row(Row("James ","","Smith"),"36636","M",3000),
  Row(Row("Michael ","Rose",""),"40288","M",4000),
  Row(Row("Robert ","","Williams"),"42114","M",4000),
  Row(Row("Maria ","Anne","Jones"),"39192","F",4000),
  Row(Row("Jen","Mary","Brown"),"","F",-1)
)
Our base schema with nested structure.

val schema = new StructType()
  .add("name",new StructType()
    .add("firstname",StringType)
    .add("middlename",StringType)
    .add("lastname",StringType))
  .add("dob",StringType)
  .add("gender",StringType)
  .add("salary",IntegerType)
Let’s create the DataFrame by using parallelize and provide the above schema.

val df = spark.createDataFrame(spark.sparkContext.parallelize(data),schema)
df.printSchema()
Below is our schema structure. I am not printing data here as it is not necessary for our examples. This schema has a nested structure.


Spark dataframe rename column

1. Using Spark withColumnRenamed – To rename DataFrame column name

Spark has a withColumnRenamed function on DataFrame to change a column name. This is the most straight forward approach; this function takes two parameters; first is your existing column name and the second is the new column name you wish for.

df.withColumnRenamed("dob","DateOfBirth")
    .printSchema()
Above statement changes column “dob” to “DateOfBirth” on spark DataFrame. Note that withColumnRenamedfunction returns a new DataFrame and doesn’t modify the current DataFrame.


Spark dataframe rename column

2. Using withColumnRenamed – To rename multiple columns

To change multiple column names, we should chain withColumnRenamed functions as shown below.

val df2 = df.withColumnRenamed("dob","DateOfBirth")
           .withColumnRenamed("salary","salary_amount")
df2.printSchema()
This creates a new DataFrame “df2” after renaming dob and salary columns.

3. Using Spark StructType – To rename a nested column in Dataframe

Changing a column name on nested data is not straight forward and we can do this by creating a new schema with new DataFrame columns using StructType and use it using cast function as shown below.

val schema2 = new StructType()
    .add("fname",StringType)
    .add("middlename",StringType)
    .add("lname",StringType)

df.select(col("name").cast(schema2),
  col("dob"),
  col("gender"),
  col("salary"))
    .printSchema()
This statement renames firstname to fname and lastname to lname within name structure.


spark sql multiple columns

4. Using Select – To rename nested elements.

Let’s see another way to change nested columns by transposing the structure to flat.

df.select(col("name.firstname").as("fname"),
  col("name.middlename").as("mname"),
  col("name.lastname").as("lname"),
  col("dob"),col("gender"),col("salary"))
  .printSchema()


Spark rename nested columns

5. Using Spark DataFrame withColumn – To rename nested columns

When you have nested columns on Spark DatFrame and if you want to rename it, use withColumn on a data frame object to create a new column from an existing and we will need to drop the existing column. Below example creates a “fname” column from “name.firstname” and drops the “name” column

val df4 = df.withColumn("fname",col("name.firstname"))
      .withColumn("mname",col("name.middlename"))
      .withColumn("lname",col("name.lastname"))
      .drop("name")
df4.printSchema()

6. Using col() function – To Dynamically rename all or multiple columns

Another way to change all column names on Dataframe is to use col() function.

val old_columns = Seq("dob","gender","salary","fname","mname","lname")
    val new_columns = Seq("DateOfBirth","Sex","salary","firstName","middleName","lastName")
    val columnsList = old_columns.zip(new_columns).map(f=>{col(f._1).as(f._2)})
    val df5 = df4.select(columnsList:_*)
    df5.printSchema()

7. Using toDF() – To change all columns in a Spark DataFrame

When we have data in a flat structure (without nested) , use toDF() with a new schema to change all column names.

val newColumns = Seq("newCol1","newCol2","newCol3")
val df = df.toDF(newColumns:_*)
The complete code
package com.sparkbyexamples.spark.dataframe



import org.apache.spark.sql.{Row, SparkSession}

import org.apache.spark.sql.types.{IntegerType, StringType, StructType}

import org.apache.spark.sql.functions.{col, _}



object RenameColDataFrame {



def main(args:Array[String]):Unit= {



val spark: SparkSession = SparkSession.builder()

.master("local[1]")

.appName("SparkByExamples.com")

.getOrCreate()



val data = Seq(Row(Row("James ","","Smith"),"36636","M",3000),

Row(Row("Michael ","Rose",""),"40288","M",4000),

Row(Row("Robert ","","Williams"),"42114","M",4000),

Row(Row("Maria ","Anne","Jones"),"39192","F",4000),

Row(Row("Jen","Mary","Brown"),"","F",-1)

)



val schema = new StructType()

.add("name",new StructType()

.add("firstname",StringType)

.add("middlename",StringType)

.add("lastname",StringType))

.add("dob",StringType)

.add("gender",StringType)

.add("salary",IntegerType)



val df = spark.createDataFrame(spark.sparkContext.parallelize(data),schema)



df.printSchema()



df.withColumnRenamed("dob","DateOfBirth")

.printSchema()



val schema2 = new StructType()

.add("fname",StringType)

.add("middlename",StringType)

.add("lname",StringType)



df.select(col("name").cast(schema2),

col("dob"),

col("gender"),

col("salary"))

.printSchema()



df.select(col("name.firstname").as("fname"),

col("name.middlename").as("mname"),

col("name.lastname").as("lname"),

col("dob"),col("gender"),col("salary"))

.printSchema()



df.withColumnRenamed("name.firstname","fname")

.withColumnRenamed("name.middlename","mname")

.withColumnRenamed("name.lastname","lname")

.drop("name")

.printSchema()

}

}
Conclusion:
This article explains different ways to rename a single column, multiple, all and nested columns on Spark DataFrame. Besides what explained here, we can also change column names using Spark SQL and the same concept can be used in PySpark.
Hope you like this article!!
Happy Learning.

Comments

Popular posts from this blog

Spark SQL “case when” and “when otherwise”

Top Hive Commands with Examples